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Abstract

When choosing how to describe what happened, we have a
number of causal verbs at our disposal. In this paper, we de-
velop a model-theoretic formal semantics for nine causal verbs
that span the categories of CAUSE, ENABLE, and PREVENT.
We use structural causal models (SCMs) to represent partici-
pants’ mental construction of a scene when assessing the cor-
rectness of causal expressions relative to a presented context.
Furthermore, SCMs enable us to model events relating both the
physical world as well as agents’ mental states. In experimen-
tal evaluations, we find that the proposed semantics exhibits
a closer alignment with human evaluations in comparison to
prior accounts of the verb families.
Keywords: causality; language; structural causal models; se-
mantics; psycholinguistics.

Introduction
Causal cognition is ubiquitous and foundational for reason-
ing about both the physical and the social world (Gerstenberg
& Tenenbaum, 2017; Waldmann, 2017). How can we best
capture people’s causal knowledge about the world? Struc-
tural causal models (SCMs) (Pearl, 2009; Spirtes, Glymour,
& Scheines, 2000) are a generic formalism where a set of
variables can represent both the mental states and actions of
agents, as well as the state of the physical world at various
levels of detail. In this paper, we use SCMs to define a se-
mantics for three verb families and experimentally evaluate
the novel predictions that our framework makes about how
people use these verbs against those of alternative models.

Our objects of study are English verbs of causing (cause,
get, make), enabling (enable, let, allow), and preventing
(prevent, stop, block). We investigate the meaning of these
nine verbs when used in linguistic constructions of the form

X
{

caused enabled
got allowed

}
α to Z X

{
made

let

}
α Z

X

prevented
stopped
blocked

α from Zing

where the subject X is an event, the object α is an agent, and Z
is an event. Our choice to use these nine verbs was motivated
by previous work on these verb families (Cao, Williamson, &
Choi, 2022; Klettke & Wolff, 2003; Wolff, Klettke, Ventura,
& Song, 2005). While each of these verbs undoubtedly has
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its own subtle meaning, our proposal is that each verb family
will at least entail a “core” meaning of CAUSE, ENABLE, and
PREVENT, respectively (see also Wolff, 2007). We propose
that causing verbs entail that the event X causes the event
Z with actions of α mediating, enabling verbs entail that X
makes α able to bring about Z, and preventing verbs entail
that X makes α unable to bring about Z.

The proposal that these verb families each entail a re-
spective “core” meaning makes good on insights from the
psychological study of causal language where periphrastic
causatives (verbs that denote indirect causal relationships)
have been organized into CAUSE, ENABLE, and PREVENT
families (Beller, Bennett, & Gerstenberg, 2020; Cheng &
Novick, 1991; Sloman, Barbey, & Hotaling, 2009; Wolff,
2007; Wolff et al., 2005; Wolff & Song, 2003; Wolff & Zetter-
gren, 2002). As depicted in Figure 1, Wolff (2007) defines
these three categories in terms of affector and patient forces,
and how they combine to align with the endstate. The rep-
resentational use of “forces” emphasizes the physical aspect
of causal relationships, and thus anticipates agents’ internal
desires to manifest as a force. From another point of view,
Cheng and Novick (1991) differentiate causing, enabling, and
preventing by measuring the covariation between candidate
causal factors and the effect over a set of contextually rele-
vant events. Yet another view uses the framework of mental
model theory in which different causal verbs are analyzed in
terms of the logical possibilities that they imply (Goldvarg &
Johnson-Laird, 2001). More recent efforts capture the differ-
ences between CAUSE, ENABLE, and PREVENT using SCMs
(Sloman et al., 2009).

Previous experimental work on causal language such as
Beller et al. (2020), Bender and Beller (2017), Klettke and
Wolff (2003), and Wolff (2003) has focused on physical set-
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Figure 1: Representation of CAUSE, ENABLE, and PREVENT
from Wolff (2007), where forces associated with the affector
(A) and the patient (P) combine to form the resultant force (R)
that may or may result in the patient reaching the endstate (E).



tings, and have primarily used causal patients that are not
goal-oriented. Prior work has demonstrated that people rea-
son about goal-directed individuals distinctly from those that
are not goal-directed (Bender & Beller, 2017; Muentener &
Lakusta, 2011). Here, we explore similarities and differences
between the semantics of causal expressions as they apply
to physical events in the world versus to rationally acting
agents who choose actions subject to their beliefs and desires
(Leslie, German, & Polizzi, 2005). Specifically, we look at
situations that feature agents and patients with inferable de-
sires and goals that influence their actions.

Causal language has also been studied extensively in lin-
guistics (Dowty, 1979; Levin & Hovav, 1994; Siegal &
Boneh, 2020). Recently, there has been a growing interest in
using SCMs to define natural language semantics (Baglini &
Siegal, 2020, 2021; Lassiter, 2018; Lauer & Nadathur, 2020;
Schulz, 2011). For example, Lauer and Nadathur (2018,
2020) argue that causal necessity and sufficiency differenti-
ate lexical uses of make and force, while Baglini and Siegal
(2020) use SCMs to explain the asymmetric entailment rela-
tion between cause and lexical causatives (e.g., kill).

In this paper, we build on the psychological and linguis-
tic work by developing a semantics for causal language based
on SCMs. We first define time-indexed causal models with
agents for jointly representing social and physical dynamics.
Then, we use this formalism to define “core meaning” con-
cepts CAUSE, ENABLE, PREVENT, and propose that verbs in
the cause, enable, and prevent families entail their respective
concept. We experimentally support three predictions made
by our model that conflict with existing accounts. In the ex-
periment, we asked participants to watch videos of a sim-
ple grid world and evaluate whether English sentences are
an accurate description. We model participants as construct-
ing some time-indexed causal model with agents of the grid
world that is used to evaluate the truth of the English sen-
tences, and give two examples of such models. We close by
discussing our results, which support the proposed semantics,
and highlighting directions for future work.

Time-Indexed SCMs with Agents
In this section, we first define causal models in the sense
of Pearl (2009). Using the logic of structural causal mod-
els (SCMs), we define a model-theoretic semantics for the
concepts of CAUSE, ENABLE, and PREVENT.

For our purposes, SCMs can simulate the mechanics and
entities of a particular world. Causal models carve up a phe-
nomenon into a set of variables with a causal structure that
connects them and causal mechanisms that determine their
value. We additionally privilege certain subsets of variables
that represent the mental states and actions of agents.

Definition 1. Models. We define a time-indexed causal
model with agents M to consist of:

• Variables where each variable Xt , indexed by a timestep
t ∈ {0,1,2, . . .}, has an associated set of values it can
take on Val(Xt).

• Causal Structure represented by arrows running from
“parent” variables to “child” variables. We require that
all parents immediately precede their children. Equiva-
lently, if Pt is a parent of Ct ′ , then t ′ = t +1.

• Causal Mechanisms that determine a node’s value
based on the value of its parents.

• Agents where each agent α has associated sets of vari-
ables encoding mental states Mα and actions Aα. We re-
quire that the children of mental state variables be men-
tal state variables or action variables of the same agent.

Definition 2. Partial and Total Settings. A setting assigns
some number of variables values. Total settings assign every
variable a value, while partial settings assign values to some
subset of variables.

The variables at timestep zero have causal mechanisms that
output constant values, which, in turn, determine the values
for variables at timestep one, which determine the values for
timestep two, and so on. Think of this total setting as captur-
ing what actually happens.

Definition 3. Events. We define an event E = e to be a par-
tial setting e of a set of variables E. An event happens in a
model M , written E = e, when the total setting that satisfies
the mechanisms of M projected onto the variables E results
in the partial setting e.

The fundamental operation on a causal model is an inter-
vention that fixes the values of some variables, which in turn
may have downstream changes on other variables. Interven-
tions can be understood as a function that takes in a causal
model and outputs a new causal model where the intervened-
on variables have their causal mechanisms fixed to be func-
tions mapping to constant values.

Definition 4. Interventions. An intervention I← i is a par-
tial setting i of variables I. A proposition φ is true under an
intervention, written ⟨I← i⟩φ, if φ is true in the model identi-
cal to M except where the causal mechanisms of I are set to
be constant functions mapping to the values in i.

We include a list of agents that are associated with mental
state variables and action variables, which allows us to define
the dynamic modality of agents, that is, what an agent is and
isn’t able to do.

Definition 5. Action Sequences. We define an action se-
quence aα

t:t ′ to be a partial setting that fixes only the action
variables of an agent α from time t to time t ′, inclusive.

Definition 6. Dynamic Modality. We define an agent α

to be able to bring about an event Z = z at time t, written
CAN(α,Z= z, t), if there is a time t ′ > t and action sequences
aα

t:t ′ and bα

t:t ′ such that

⟨Aα

t:t ′ ← aα

t:t ′⟩Z = z∧⟨Aα

t:t ′ ← bα

t:t ′⟩Z = z′.



Semantics for Causing,
Enabling, and Preventing Verbs

We take the definitions given by Pearl (2009) and use them to
build a semantics for verbs of causing, enabling, and prevent-
ing. We take the standard philosophical view that causation
is a binary relation between events (Davidson, 1967; Lewis,
1973, 1986; cf. Gerstenberg, Goodman, Lagnado, & Tenen-
baum, 2021). This means that in a sentence depicting a causal
relationship of the structure [X CAUSE/ ENABLE/ PREVENT α

Z], X and α Z are events and X implicitly or explicitly embeds
both an agent and event led by the agent when the syntactic
subject is agentive (Hitchcock, 2020). Others have argued
that facts are the relata of causal relationships, since facts are
better able to account for negative events or absences (Ben-
nett, 1988; Mellor, 2004). For our purposes, we allow the
term event to have a fairly wide domain and include previ-
ously debated phenomena such as states and events of omis-
sion (Beebee, 2004; Gerstenberg & Stephan, 2021; Henne,
Pinillos, & De Brigard, 2017; McGrath, 2005).

Causing Verbs
We hypothesize that a verb from the cause family entails that
X was a cause of α taking actions to bring about Z. Formally,
we define CAUSE(X = x,α,Z = z, t) to be true when the fol-
lowing hold

1. The event X = x happens.

2. The event Z = z happens.

3. There exist a sequence of actions aα
≥t such that

(a) The event of agent α taking the actions aα
≥t happens

(b) The event Aα
≥t = aα

≥t causes the event Z= z and this
causal relationship is fully mediated2 by the event
X = x, meaning there exists x′, a′, and z′ such that

⟨X← x′⟩(Aα
≥t = a′∧Z = z′)∧⟨X← x′,Aα

≥t ← aα
≥t⟩Z = z.

Consider the following sentence as an example: “The deer
running across the street caused Josie to slam on the breaks.”
Condition 1 tells us that the event of the deer running across
the street actually occurring logically follows. Condition 2
tells us that the event of Josie slamming on the breaks actually
happens as well. Finally, Condition 3 tells us that Josie took a
(sequence of) actions that fully mediates the the deer running
across the street causing Josie slamming on the breaks, such
as taking her foot off the gas and pushing on the break.

Enabling Verbs
We hypothesize a verb from the enable family entails that X
was a cause of α having available actions that bring about the
event Z. Formally, we define ENABLE(X = x,α,Z = z, t) to
be true when the following hold

1. The event X = x happens.

2Mediation in the sense that the indirect effect is transmitted to
the outcome via the mediator (Pearl, 2014).

Figure 2: A mockup one of the short videos shown to par-
ticipants where the bolded cell starts empty and the farmer
moves towards the apple. Then, the wizard places a rock
which blocks the farmer’s way to his (apparently) preferred
fruit. In the end, the farmer reaches the banana instead. The
green arrows indicate in which direction the farmer moves
during the video and are added only for demonstration.

2. The agent α is able to bring about the event Z = z

CAN(α,Z = z, t).

3. The event X = x causes the agent to be able to bring
about the event, meaning there exists an x′ such that

⟨X← x′⟩¬CAN(α,Z = z, t).

Again, consider the following example sentence: “The ice
freezing enabled Jin to skate on the lake.” Condition 1 holds
because the ice actually froze, Condition 2 holds because Jin
actually has the ability to skate on a frozen lake, and finally,
Condition 3 holds because if the ice hadn’t frozen, then Jin
wouldn’t have been able to skate on the lake.

Preventing Verbs
We hypothesize a verb from the enable family entails that
X was a cause of α having no available actions that can
bring about the event Z. Formally, we define PREVENT(X =
x,α,Z = z, t) to be true when the following hold

1. The event X = x happens.

2. The agent α is unable to bring about the event Z = z

¬CAN(α,Z = z, t).

3. The event X = x causes the agent to be unable to bring
about the event, meaning there exists an x′ such that

⟨X← x′⟩CAN(α,Z = z, t).

Consider the following example of a preventing verb: “The
storm warning being issued prevented Juan from visiting his
family over the holidays.” This statement tells us that the
storm warning was actually issued (Condition 1), Juan is ac-
tually unable to travel to his family (Condition 2), and if the
storm warning hadn’t been issued, then Juan would have been
able to visit his family (Condition 3).



Novel Predictions
Our proposal is that the verb families of cause, enable, and
prevent verbs have meanings that logically entail the con-
cepts CAUSE, ENABLE, and PREVENT. We experimentally
test three novel predictions that our account makes which are
in conflict with previous accounts.

H1. X may be an event of omission for cause, enable, or
prevent verbs.

Hypothesis H1 follows from our model because an act of
omission (e.g., “the fire did not happen”) is defined in the
same way as a normal action (e.g., “the fire happened”) in
that both are represented as a partial setting of variables. This
hypothesis is in conflict with the accounts of Dowe (2004)
and Salmon (1998) which predict that X may not be an omis-
sion.

H2. Enabling verbs do not entail that Z happened.

H2 is in conflict with the account of Beller et al. (2020) and
Wolff et al. (2005) which argue that enabling verbs do entail
that Z actually happened.

H3. Preventing verbs do not entail that Z would have
happened if not for X .

Hypothesis H3 is in conflict with the account of Beller et
al. (2020) and Wolff et al. (2005) which predict that pre-
venting verbs do entail that Z would have happened if not
for X . Hypotheses H2 and H3 follow from our model be-
cause our semantics only specifies the ability of an agent to
bring about event Z, rather than the fact that event Z would
have come about in the relevant counterfactual situation. Ev-
idently, this characteristic emphasizes the applicability of our
semantics only to events with agents, and excludes purely
physical events, especially since our primitives require agents
to be associated with mental states.

Experiment
We tested our semantics by presenting participants with short
animated videos including scenes like the one shown in Fig-
ure 2, and asking them to select which of several expressions
accurately describe the scene, and which ones do not.

Methods
Data, scripts, and experiment materials are available on-
line: https://github.com/cicl-stanford/Causative
-Verbs.

Materials We created 7 different videos, each less than 10
seconds long. Figure 2 shows the general structure of each
video. In each video, there is a wizard and hallway with a
farmer in the middle, an apple on the far right, a banana
on the far left, and a bolded cell between the farmer and the
apple which could be empty or contain a rock. Across the
videos, we varied (1) whether a rock is present in the bolded
cell at the beginning of the video, (2) whether the wizard casts

a spell that either removes or places the rock, and (3) whether
the farmer prefers the apple or banana.3 In Figure 2, we show
three frames for the video where the bolded cell starts empty,
the farmer walks toward the apple, but then the wizard places
a rock stopping the farmer who ends up going to the banana.

Language Stimuli For each video, we constructed a set of
nine sentences of the form “The NP of the rock verbed the
farmer (to/from) reach(ing) the apple.” where NP is either
appearance, disappearance, presence, or absence depending
on which event happened.
Participants. 80 native English-speaking participants (age:
Mean = 40, SD = 12; gender: 36 female, 43 male, nation-
ality: US) were recruited over Prolific. Each participant was
provided with an introduction to the study and had to pass
a simple comprehension question to continue. Failing the
comprehension check brought the participants back to the in-
troductory instructions, after which they could re-attempt the
comprehension question. Participants took on average 7.32
minutes (SD = 4.68) to complete the task and were compen-
sated at a rate of 12.57 USD per hour.
Procedure. Each participant completed 7 trials. The first
trial was always the one shown in Figure 3a to ensure that
participants were aware of the full abilities of both the wiz-
ard and the farmer, in addition to these being specified in the
participant instructions (since not all stimuli include the wiz-
ard taking an action, or the farmer changing directions). Each
trial contained one of the short videos paired with four ran-
domly sampled sentences of interest and a trivial attention
check question about the video. The four verbs every partici-
pant saw was held constant throughout all trials. Participants
were asked to select whether each sentence was “accurate” or
“inaccurate”4. 8 participants were excluded for failing any of
the attention checks.

Results
Figure 3 depicts the proportion of participants selecting “ac-
curate” for each verb in each video. We predicted that the
causing, enabling, and preventing verbs would have mean-
ings that entail the logical formulas CAUSE, ENABLE, and
PREVENT, respectively. The results broadly support this hy-
pothesis. Whenever a logical formula is not true, the verbs
in the corresponding family are near zero. However, for sit-
uations in which our logical formulas are true, participants’
don’t always endorse the corresponding verbs as accurate.
H1. Our hypothesis that X may be an event of omission is
supported in Figures 3e, 3f, and 3g where participants found
sentences accurate even when the wizard took no action. Af-
ter aggregating the data by-participant and evaluating such
against their hypotheses, we get t(71) = 17.61, p < .001 and

3This results in seven videos, because when the rock is present
and the wizard casts no spell, the video is the same regardless of the
farmer’s preference.

4We also conducted an experiment where we allowed for re-
sponses on a continuous slider scale instead of a binary choice setup.
This led to similar results which are omitted here.

https://github.com/cicl-stanford/Causative-Verbs
https://github.com/cicl-stanford/Causative-Verbs
https://github.com/cicl-stanford/Causative-Verbs
https://github.com/cicl-stanford/Causative-Verbs
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: rock is not initially placed
: rock is initially placed
→ : farmer goes for the apple
→ : farmer goes for the banana
places : wizard places the rock

removes : wizard removes the rock
places : wizard places the rock
does nothing: wizard does nothing
reaches : farmer reaches the apple
reaches : farmer reaches the banana

Figure 3: Proportion of participants who judged the different expressions to be accurate (blue bars with 95% bootstrapped
confidence intervals) together with the theoretical predictions (striped pink bars), separated for each of the seven videos.

t(71) = 49.85, p < .001 for the CAUSE and ENABLE verbs in
Figure 3e, respectively; t(71) = 7.50, p < .001 for the EN-
ABLE verbs in Figure 3f; t(70) = 16.75, p < .001 for the
PREVENT verbs in Figure 3g. It has been long observed that
people ordinarily judge omissions to be causes (see, e.g., Ger-
stenberg & Stephan, 2021; Henne, Pinillos, & Brigard, 2017;
Walsh & Sloman, 2011). Our experiment extends this result
to enabling and preventing verbs.
H2. Our hypothesis that the effect Z is not entailed by
enabling verbs is supported in Figures 3d and 3f where a
significant portion of participants (t(71) = 9.31, p < .001;
t(71) = 7.50, p < .001, respectively) found sentences with
enabling verbs accurate even when the farmer never reached
the apple.
H3. Our hypothesis that preventing verbs do not entail that Z
would have happened if not for X is supported in Figures 3b
and 3g where a significant proportion of participants (t(70) =

13.05, p< .001; t(70) = 16.75, p< .001, respectively) found
sentences with preventing verbs accurate when it is clear that
the farmer wouldn’t reach the apple even if he had been able
to (because he prefers the banana anyways).

Discussion
We found that participants only judged causing, enabling, or
preventing verbs to be accurate when the core meanings of
CAUSE, ENABLE, and PREVENT are true. However, we saw
the contrapositive did not hold. While this is consistent with
our hypothesis, we will still consider what could explain the
gap between core logical meanings and the empirical results
on English verbs.

Potential explanations include different thresholds for
when the term accurate is appropriate, sub-populations hav-
ing different underlying semantics, and variations in prag-
matic reasoning about implications.



If a portion of participants have semantics that do require
that X = x is not an event of omission or that the event Z = z
happens in instances of enabling or preventing. In this case,
their lexical meanings are logically stronger (but do not con-
tradict) our core logical meanings.

Another possibility is that all participants have semantics
consistent with our core meanings, but make pragmatic in-
ferences that either X = x is not an event of omission or (for
enable and prevent verbs) the event Z = z happens. The em-
perical data results from variations in both the strength of the
inference and the threshold of inference strength necessary to
license the use of the word “accurate”.

The proposed semantics has the potential to model partici-
pant disagreement with an appropriate pragmatic account that
weights preferences according to complex contextual con-
straints. We hope that our semantics can form the basis for
the exploration of holistic models of pragmatic causal lan-
guage production and comprehension.

A crucial benefit of semantics grounded in SCMs is that
we can remain agnostic about the details of the participants’
mental model of the video stimuli. Any two participants may
have different causal models in their minds with variables
corresponding with events at varying levels of granularity.
Our conjecture is that these mental models which ground the
truth of natural language sentences have the structure of time-
indexed causal model.
Detailed Model. A participant might have a detailed, low-
level causal model of the grid world’s mechanistic updates at
each time-step with variables representing the values of each
cell, or a high-level causal model with variables representing
the occurrence of major events and aggregated timesteps.

There are two agents, Wizard and Farmer. The variables
are defined to be V = Grid∪AFarmer∪AWizard where

Grid= {G j
t : 0≤ j ≤ 24 ∧ t ∈ N}

AFarmer = {AF
t : t ∈ N\{3}} AWizard = {AW

3 }
The values of these variables are defined to be

Val(Gt
j) = {Blank,Farmer,Wizard,Rock,Banana,Apple}

Val(AF
t ) = {→,←} Val(AW

3 ) = {Cast,Don’t Cast}

for 0≤ j ≤ 24 and t ̸= 3.
The causal mechanisms of the grid variable on the first

timestep are constant functions that set the scene, with the
rock only appearing in certain experimental conditions.

FG j
0
=

Farmer j = 12
Banana j = 2
Rock or Blank j = 18
Apple j = 22
Blank otherwise

FG j
4
(g j

3,a
W
3 ) =



Rock aW
3 = Cast

and g j
t−1 = Blank

Blank aW
3 = Cast

and g j
t−1 = Rock

Rock aW
3 = Don’t Cast

and g j
t−1 = Rock

Blank aW
3 = Don’t Cast

and g j
t−1 = Blank

g j
2 otherwise

For the timestep t = 4, the causal mechanisms of the grid
variables determine the values of each cell based on the value
of the cell on the previous timestep and any action taken by
the wizard on the previous timestep.

FG j
t
(g j−1

t−1 ,g
j
t−1,g

j+1
t−1 ,a

F
t−1) =

Farmer aF
t−1 =→ and g j−1

t−1 = Farmer
Farmer aF

t−1 =← and g j+1
t−1 = Farmer

g j
t−1 otherwise

For all other timesteps t ̸∈ {0,4}, the causal mechanisms of
the grid variables determine the values of each cell based on
the value of the cell on the previous timestep and any action
taken by the farmer on the previous timestep. In both cases,
the model will be compatible with the proposed semantics.

Using this low-level mental model of the gridworld, par-
ticipants would be able to record events such as the Farmer’s
initial direction (i.e.,← or→) and actions taken by the Wiz-
ard (i.e. Place Rock and/or Lift Rock).
Abstract Model. Alternatively, participants may represent
their causal models at a higher level of abstraction. The
videos can be understood as a sequence of four event vari-
ables: (1) R, the rock is present or absent, (2) I, the farmer
initially moves left or right, (3) W , the wizard casts or
doesn’t cast, and (4) F , the farmer moves left or right after
the wizard acts. Like in the lower-level model, there are two
agents, Wizard and Farmer. These variables have binary do-
mains and their causal mechanisms directly encode the con-
trasting conditions in our experiments. The constant mech-
anism FR0 = present or absent encodes one of two starting
positions, the mechanisms for farmer movement FF1(r0) and
FF3(w2) encodes one of two fruit preferences (apple or ba-
nana), the mechanism for wizard action FW2( f1) encodes one
of two wizard mindsets (helpful and unhelpful).
Future Directions. While our proposal is compatible with
participants’ judgments in the presented experiment, our se-
mantics is limited in that it cannot make graded predictions.
For example, consider that our notion of bringing about is bi-
nary – either an agent is able to bring about the effect, or it
isn’t. Introducing probability would be an option for creating
a gradient.

We are also interested in the level of granularity at which
participants mentally model causal scenarios. As discussed
in the Experiment section, participants may internally reason
using the low-level model or the high-level model. What are
the implications of using one or the other for natural language
judgments? Theories of causal abstraction and event repre-
sentation provide a rich avenue for future work (Gantt, Glass,
& White, 2022; Geiger, Potts, & Icard, 2023).

Conclusion
This paper proposes a model-theoretic semantics for nine
verbs of causing, enabling, and preventing using the logic
of SCMs. SCMs enable us to not only model affector and
patients’ mental states, but also allow us to represent partici-
pants’ construal of a presented video at different abstractions.
In an experiment that asked participants to rate descriptions
of a context, we found that the results aligned better with the
proposed semantics than with previous accounts of the verb
families. This suggests that an SCM account of causal lan-
guage provides a valuable new perspective to understanding
causal event language and judgments.
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