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Abstract
Event-keyed summarization (EKS) requires
summarizing a specific event described in a
document given the document text and an event
representation extracted from it. In this work,
we extend EKS to the cross-document setting
(CDEKS), in which summaries must synthe-
size information from accounts of the same
event as given by multiple sources. We intro-
duce SEAMUS (Summaries of Events Across
Multiple Sources), a high-quality dataset for
CDEKS based on an expert reannotation of the
FAMUS dataset for cross-document argument
extraction. We present a suite of baselines on
SEAMUS—covering both smaller, fine-tuned
models, as well as zero- and few-shot prompted
LLMs—along with detailed ablations and a hu-
man evaluation study, showing SEAMUS to be
a valuable benchmark for this new task.

1 Introduction

Providing useful information about events re-
quires the ability not only to extract relevant, user-
specified information from documents, but also to
present that information in a readable form. Draw-
ing on this observation, Gantt et al. (2024) re-
cently proposed event-keyed summarization (EKS),
a task that entails summarizing a particular event,
given a document and an event representation ex-
tracted from it. EKS thus seeks to satisfy both
requirements—reconciling the specific information
needs of IE end users with the more generic outputs
of traditional summarization models—in order to
communicate precise information about a single
event in a contextualized and readable form. EKS
can thus be viewed as event-centric controllable
summarization (Fan et al., 2018), where the con-
trolled attributes are the event and roles of interest.

However, adequately understanding a particu-
lar event often requires synthesizing information
across multiple sources—evidenced in part by the
rapidly growing interest in retrieval augmented gen-
eration (RAG; Lewis et al., 2020b). Accordingly,
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Figure 1: Schematic illustration of the SEAMUS report
and cross-document event-keyed summarization tasks.
Letters represent event arguments.

this work extends EKS to the cross-document set-
ting (CDEKS), drawing on—and enhancing—the
FAMUS dataset for cross-document argument ex-
traction (CDAE) to do so (Vashishtha et al., 2024).
We summarize our contributions as follows:

1. We collect and release an expert reannotation
of the FAMUS CDAE dataset, correcting the
existing crowdsourced annotations.

2. Based on (1), we collect and release SEA-
MUS, an expert-annotated dataset of single-
and cross-document event-keyed summaries—
the first ever dataset for CDEKS.1

3. We present a suite of baselines on SEAMUS
using both smaller, fine-tuned models and
prompted LLMs, showing CDEKS to be chal-
lenging relative to single-document EKS.

4. We conduct fine-grained ablations and a hu-
man evaluation, detailing CDEKS demands as
a task as well as models’ current capabilities.

2 Background

FAMUS (Vashishtha et al., 2024) is a dataset of
1https://github.com/wgantt/SEAMuS
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short English Wikipedia passages (reports) paired
with much longer, genre-diverse English source
documents cited by those reports.2 FAMUS sup-
ports two tasks: (1) Source Validation (SV), where
the goal is to determine whether a candidate source
document is valid for—i.e. describes the same
event as—an event identified in a provided re-
port; and (2) Cross-Document Argument Extrac-
tion (CDAE), which entails extracting arguments
for an identified event from both the report and a
valid source document. SEAMUS builds on the
FAMUS CDAE data, which contains 1,265 report-
source document pairs (split 3:1:1 across train, dev,
and test), and annotates arguments of the same tar-
get event for each document in a pair using a subset
of the FrameNet ontology restricted to frames de-
noting events, states, or processes (Baker et al.,
1998). A single, maximally “informative” men-
tion is annotated for each argument, where proper
names > nominal expressions > pronouns (see Li
et al., 2021b). In both report and source texts, argu-
ments may be distributed across sentences.

Event-Centric Summarization In introducing
EKS, Gantt et al. (2024) released MUCSUM, an
EKS dataset based on the classic MUC-4 template
filling dataset (Sundheim, 1992). MUCSUM con-
tains abstractive event-keyed summaries for each
event template in MUC-4, written so as to faith-
fully express the role of each template argument,
plus any minimal additional context required for
the summary to act as a standalone account of the
event. Gantt et al. present baselines on MUCSUM,
and also conduct a human evaluation of model out-
puts, which inspires our own (§5).

Other event-centric summarization research has
focused on timeline summarization (TLS), which
constructs chronological lists of events, often with
timestamps and usually based on multiple docu-
ments (Allan et al., 2001; Chieu and Lee, 2004;
Li et al., 2021a; Rajaby Faghihi et al., 2022, i.a.).
Beyond TLS, S Hussain et al. (2022) use ex-
tracted event-related keywords to condition single-
document summarization, and integrate an event-
oriented attention mechanism into BART to encour-
age models to cover all events discussed. Addition-
ally, Vallurupalli et al. (2022) introduce the POQue
dataset, which has annotations that characterize
the subevent structure of complex events in stories
and the changes undergone by their participants.
Among these annotations are process summaries,

2All documents are from MegaWika (Barham et al., 2023).

which give high-level descriptions of a complex
event, and change summaries, which describe the
changes experienced by a participant as a result.

Multi-Document Summarization CDEKS is
an event-centric multi-document summarization
(MDS) task. Work on MDS has pursued a variety
of goals, including synthesizing reviews (Gane-
san et al., 2010; Chu and Liu, 2019, i.a.), summa-
rizing dialogues (Kraaij et al., 2005; Chen et al.,
2021, i.a.), distilling news articles (notably, via
DUC3 and TAC4), and generating reports (May-
field et al., 2024). Event-centric MDS datasets
include MultiNews (Fabbri et al., 2019) and Di-
verseSumm (Huang et al., 2024), which focus on
new stories, but SEAMUS is most similar to Auto-
hMDS (Zopf, 2018) and WCEP (Gholipour Gha-
landari et al., 2020) in being built on Wikipedia
articles and their sources.

CDEKS departs from all of these, however, in re-
sponding to an explicit information need. It is thus
an event-centric form of query-oriented MDS (Ma
et al., 2020), where a query expressing the kind of
information to be summarized is provided as addi-
tional input. But whereas queries from prior work
are given in natural language—e.g. article titles
(Liu and Lapata, 2019) or web searches (Pasunuru
et al., 2021)—ours are structured event represen-
tations, drawing on the IE tradition of leveraging
event ontologies to encode information needs, and
enabling extraction-to-summarization pipelines.

Our Work We summarize three key differences
between prior work and our own. We focus on:

1. Synthesizing information about a single event
across multiple sources. Both multi-event (e.g.
TLS) and single-source (e.g. EKS) summa-
rization have their place, but many practical
information needs depend on the rich under-
standing of an individual event that is attain-
able only via cross-source synthesis.

2. Responding to a specific event-centric infor-
mation need, not generically summarizing
event-related content (contra S Hussain et al.,
2022; Vallurupalli et al., 2022).

3. Leveraging rich, structured event represen-
tations to achieve (1) and (2)—not short,
unstructured queries like web searches (Pa-
sunuru et al., 2021) or topics (Allan et al.,
2001; Rajaby Faghihi et al., 2022, i.a.).

3https://duc.nist.gov/
4https://tac.nist.gov/publications/index.html
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3 Annotation

Annotation of SEAMUS was divided into two
phases. In the first phase, abstractive report sum-
maries were written for each event in FAMUS (see
§2) based only on its report document, and were
then annotated for event arguments (§3.1). In the
second phase, abstractive cross-document sum-
maries were written for each event based jointly
on its report and source documents, and were then
annotated for event arguments as in the first phase
(§3.2). In both phases, annotators were instructed
to amend spurious, missing, or otherwise incorrect
argument annotations in the report or source doc-
ument before writing their summary. Thus, both
phases involve (1) correcting existing FAMUS ar-
gument annotations; (2) writing a summary based
on the corrected annotations; and (3) annotating ar-
guments in the summary. The phases differ only in
the documents on which the summaries are based
(report only vs. report and source). All annotations
were performed by authors of this work.5

3.1 Phase 1: Report Summaries

Similar to the summaries in MUCSUM (§2), the
report summaries in SEAMUS are concise sum-
maries of a single event as recounted in a single
document (a FAMUS report) that aim to faithfully
represent the role of each participant and to provide
the minimum additional context needed to serve as
an accurate, standalone account of the event. Al-
though the FAMUS report documents are already
relatively short (typically, 2-3 sentences), they of-
ten discuss multiple events.6 Thus, the report sum-
maries are further distilled descriptions focused on
just one event from the report.

Three authors completed the Phase 1 annotation,
with each summary and its arguments singly anno-
tated. Items from the train split were randomly and
evenly divided among these three authors; items
from the dev and test splits were similarly divided
between two of them. All items were provided in
JSON files containing the following information
for each example: (1) a unique example ID, (2)
the FAMUS report text; (3) the FAMUS-annotated
frame, trigger, and arguments of the target event
from the report; and (4) definitions of the annotated
frame and roles as given in FrameNet. Annotators

5Appendix E has additional details and agreement results.
6E.g. for reports in the SEAMUS train split, the MegaWika

dataset (Barham et al., 2023), from which the reports are taken,
has an average of 21.4 FrameNet frames annotated.

Report Cross-Doc

Train Dev Train Dev

Examples 759 253 759 253
Avg. Words 21.8 24.6 30.5 34.5
Avg. Sentences 1.0 1.0 1.2 1.2
Avg. Arguments 3.1 3.5 4.1 4.6

Table 1: Summary statistics for the SEAMUS report
and cross-document summaries. See Table 7 for more.

were provided with detailed instructions written
by the first author and completed a 10-example
practice task before beginning the main annotation.
Consistent with FAMUS, both the corrected re-
port arguments and the report summary arguments
were annotated as single, maximally informative
mentions (see §2). Annotators were encouraged to
use the same mentions in their summaries as were
annotated in the (corrected) report arguments, but
were permitted to alter them in the summary in or-
der to preserve clarity or naturalness. Annotations
were validated to ensure that (1) they were shorter
than the report they summarized and (2) the num-
ber of arguments for a given role matched between
each report and its summary. All initially invalid
annotations were then corrected.

3.2 Phase 2: Cross-Document Summaries

The cross-document summaries are intended as en-
riched versions of the report summaries, synthe-
sizing details about the target event from both the
report and the target event’s source document.

Five of the authors completed the Phase 2 an-
notation, with all summaries and arguments singly
annotated as in Phase 1. Items from all three splits
were randomly and evenly distributed to the five
annotators. Given the complexity of the Phase 2
task, annotation was performed in two parts, us-
ing adapted versions of Vashishtha et al.’s (2024)
interface for FAMUS CDAE annotation.7

In Part A, annotators corrected FAMUS argu-
ment annotations in the source documents and then
wrote the cross-document summary based jointly
on the report and source texts and their corrected
arguments. Annotators were encouraged to use the
most informative mention of an argument across
both the report and source documents, but again
were allowed to make alterations for clarity.

In Part B, annotators annotated arguments in the

7Interface source code was obtained from Vashishtha et al.
Screenshots are shown in Appendix E.



Event: Clemency

Cross-Document Summary

Source
Blogger Lashing: Saudi Rejects Criticism of Badawi Case (BBC Article)

Report
Sigmar Gabriel (Wikipedia Excerpt)

Report Summary

…During a 2015 visit to King 
Salman of Saudi Arabia, Gabriel 
launched an unusual public effort to 
persuade Saudi authorities to free 
imprisoned writer Raif Badawi and 
grant him clemency, amplifying 
Germany's political voice in a region 
in which its influence had largely 
been limited to economic issues in 
years past. He had been urged by 
MPs and human rights organizations 
to take up Badawi's case before his 
trip…

During a 2015 visit to King Salman 
of Saudi Arabia, Gabriel tried to 

persuade Saudi authorities to free 
imprisoned writer Raif Badawi and 

to grant him clemency.

…Saudi Arabia has expressed "surprise and dismay" at international media reports criticising 
the flogging of a Saudi blogger for insulting Islam….

Raif Badawi was sentenced to 1,000 lashes and 10 years in jail last year….Mr Badawi's case 
has prompted international protests and was raised by several governments. Germany's 
economic affairs minister and vice-chancellor, Sigmar Gabriel, currently on a visit to Saudi 
Arabia, was urged by MPs and human rights organisations to take up Mr Badawi's case while in 
Riyadh. Before going into a meeting with King Salman, Mr Gabriel said “the harshness of this 
sentence, especially the corporal punishment, is something unimaginable for us and of course it 
weighs on our relations”….
Mr Badawi established the Liberal Saudi Network, a now-closed online forum that sought to 
encourage debate on religious and political matters in 2008. In 2012, he was arrested and 
charged with "insulting Islam through electronic channels”….

During a 2015 visit, Sigmar Gabriel tried to persuade Saudi authorities, including King Salman, 
to grant Raif Badawi clemency for insulting Islam through electronic channels.

: Executive_Authority          : Offender         : Crime          : Time          : Place

Figure 2: An example from our SEAMUS dataset. Report documents (bottom left) are Wikipedia passages that
describe some event (top right) and that cite a longer (non-Wikipedia) source article (bottom right) as evidence, with
event arguments annotated in both documents. SEAMUS features simple summaries of these events based on only
the report (top left) as well as enriched, cross-document summaries based on both the report and its source, which
typically contain additional information about the event (here, the CRIME). Appendix A has further examples.

summaries from Part A. As in Phase 1, all annota-
tors were provided with detailed instructions and
completed a 10-example practice annotation before
doing the main task. Summary argument annota-
tions were again validated for length and to ensure
that they featured as many arguments for a given
role as the maximum number annotated for that
role between the report and source texts.

Summary statistics for both the report and cross-
document summaries can be found in Table 1
and an example is shown in Figure 2. Both
types of summary average roughly a sentence in
length, though cross-document summaries tend to
be longer and to have more arguments—consistent
with the richer information they provide.

4 Experiments

4.1 Overview

Tasks We present experiments on both the report
(§4.2) and cross-document (§4.3) summarization
tasks. In the report task (single-document EKS),
both the report and its annotated event are pro-
vided as input. The cross-document task (CDEKS)
is analogous, but also includes the corresponding
source document and its event annotation as input.
Next, in §4.4, we briefly discuss some ablations on
the input inspired by similar ones from Gantt et al.

(2024), with full results in Appendix F. Finally,
§4.5 evaluates the impact of degraded argument
extractions on summary quality.

Models We benchmark SEAMUS using models
of two types. First, we consider several classic pre-
trained encoder-decoder models widely used for
summarization: BART (Lewis et al., 2020a), PE-
GASUS (Zhang et al., 2020), and T5 (Raffel et al.,
2020), fine-tuning the large versions of all three on
the SEAMUS training data. Second, we consider
some of the latest proprietary LLMs, evaluated
in both the zero- and few-shot settings: GPT-4o8,
GPT-4o Mini (GPT-4O M in Table 2)9, Claude
3 Haiku (CLAUDE H)10, and Claude 3.5 Sonnet
(CLAUDE S)11. For the few-shot examples, we use
the three examples from the train split whose frame
matches that of the target example. Finally, we also
give results for a report baseline (RB) that treats
the report text itself as the predicted summary.

Metrics We report several standard summariza-
tion metrics, including ROUGE-1 (R1), ROUGE-2
(R2), and ROUGE-LCS F1 scores (RL; Lin, 2004),

8https://openai.com/index/hello-gpt-4o/
9https://openai.com/index/

gpt-4o-mini-advancing-cost-efficient-intelligence/
10https://www.anthropic.com/news/claude-3-haiku
11https://www.anthropic.com/news/

claude-3-5-sonnet

https://openai.com/index/hello-gpt-4o/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://www.anthropic.com/news/claude-3-haiku
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet


Report Cross-Document

Model S R1 R2 RL BS CR A F R1 R2 RL BS CR A F

RB - 56.2 46.1 48.4 91.6 52.6 99.1 98.7 48.5 33.3 39.3 89.6 31.0 99.3 93.1
GPT-4O M ZS 62.2 42.3 51.3 93.2 58.5 86.0 75.8 51.8 29.9 39.0 91.3 39.0 81.5 88.9

FS 72.0 55.4 61.0 94.3 66.8 94.1 83.3 57.5 36.9 45.7 92.1 39.8 88.5 89.8
GPT-4O ZS 64.0 45.2 53.0 93.2 61.4∗ 83.9 74.8 58.0∗ 36.4 45.8 92.2∗ 41.3∗ 86.6 88.4

FS 72.5† 56.6† 62.3† 94.4 69.6† 94.7 81.6 61.2† 40.7† 49.4† 92.7† 42.7† 90.6 88.5
CLAUDE H ZS 64.8 46.2 54.7 93.4 58.8 84.9 77.6 57.7 36.9∗ 46.5 92.1 36.2 90.4 91.4

FS 71.7 55.9 61.1 94.3 63.2 94.8 82.5 59.4 39.5 48.6 92.1 37.2 91.0 90.5†

CLAUDE S ZS 67.4∗ 48.1∗ 56.5∗ 93.8∗ 61.1 93.0∗ 80.6∗ 56.7 34.8 45.3 91.9 35.2 93.4∗ 91.7∗

FS 72.2 54.6 61.3 94.5† 65.7 95.9† 83.9† 57.9 38.1 47.4 92.1 37.3 95.1† 90.4
BART FT 74.5 61.7 66.4 94.6 69.9 91.6 79.3 63.8 45.5 53.0 92.6 45.0 85.6 85.3
PEGASUS FT 75.2 62.5 67.0 94.7 70.0 96.1 82.2 63.7 46.2 53.2 92.5 43.7 93.9 90.5
T5 FT 76.6 64.4 68.9 95.0 74.2 98.2 85.0 64.1 46.4 52.8 92.6 44.7 92.5 90.2

Table 2: Report and Cross-Document summarization results on SEAMUS. Best overall results are bolded; ∗ and †

denote best zero- and few-shot results, respectively. S=setting; RB=report baseline; ZS=zero-shot; FS=few-shot;
FT=fine-tuned. See §4.1 for an explanation of metrics; higher is better for all. See Tables 10 and 11 for 95% CIs.
Best A and F results exclude RB, for reasons explained in Appendix F.
as well as BERTScore F1 (BS; Zhang et al., 2019).

Given EKS’s focus on producing summaries that
recover specific pieces of information—as repre-
sented by an event’s roles—we report several other
metrics that evaluate this. First, we report CEAF-
REE F1 (CR; Du et al., 2021), a form of argument
F1 that allows us to compare arguments extracted
from a predicted summary against those in a refer-
ence summary, aligning arguments based on exact
match.12 Following Gantt et al. (2024), we train
the event extraction model of Xia et al. (2021)13

on SEAMUS and use it to extract arguments from
the predicted summaries, constraining extraction
to arguments that fill roles of the target event only.

The summaries in SEAMUS also make claims
about these arguments that reflect their role in the
target event. To evaluate these claims’ fidelity
to the text, we report AlignScore (A; Zha et al.,
2023), a learned metric that provides a score in
[0, 1] that indicates how well a claim (here, a sum-
mary) is supported by a given context (the report
for the report task, and the concatenated report and
source for the cross-document task). We also re-
port FACTSCORE (F; Min et al., 2023), which uses
LMs to (1) decompose a generation into a set of
atomic facts, and (2) determine the % of these facts
supported by a given knowledge source, where F
is the average % supported over all examples. We
use as knowledge sources the contexts used for A.

4.2 Report Summarization
Setup As input for BART, PEGASUS, and T5,
we provide the full report text concatenated with
a linearized representation of the annotated report

12Appendix F reports a soft match variant of this metric.
13https://hub.docker.com/r/hltcoe/lome

event that contains the frame name, the event trig-
ger, and the role names, each followed by a list
of the arguments annotated for that role. We train
each model against a standard conditional language
modeling objective w.r.t. the gold report summaries
for a maximum of 30 epochs, using a patience of
5 epochs, with dev R1 as the stopping criterion.14

For inference, we use beam search decoding with a
beam size of 5 and a max of 256 new tokens.

For the Claude and GPT models, our system
prompt asks the model to analyze and summarize
a specific event. The user prompt provides more
detailed task instructions, followed by the full re-
port text, and a description of the target event that
includes (1) the frame name and definition from
FrameNet; (2) the trigger; and (3) a bulleted list,
where each item includes a role name, its defini-
tion, and the arguments annotated for that role. In
the few-shot setting, we format the three few-shot
examples (see §4.1) the same way, but with the
target summary shown at the end of each. We set
temperature to 0.7 and the max new tokens to 256,
leaving other API defaults unchanged.15

Results are shown in the left half of Table 2.
First, we find that T5 obtains the best performance
across all metrics, followed by PEGASUS and
BART, with T5 exhibiting particularly strong re-
sults for CR, indicating its ability to accurately
recover event arguments in its summaries. Second,
the LLMs almost universally outperform the report
baseline (RB)—even in the zero-shot setting (ZS),
where Claude Sonnet generally obtains the best re-
sults. Third, adding just three few-shot examples

14Details on training and input formats are in Appendix B.
15Appendix C has further details on models and prompts.

https://hub.docker.com/r/hltcoe/lome


Report Cross-Document

Model p R1 R2 RL BS CR A F R1 R2 RL BS CR A F

T5

0.0 76.6 64.4 68.9 95.0 74.2 98.2 85.0 64.1 46.4 52.8 92.6 46.3 92.5 90.2
0.1 75.6 62.8 67.8 93.9 71.4 97.6 84.7 62.8 45.3 51.8 91.5 47.2 92.0 89.9
0.2 74.0 61.7 66.2 93.6 69.6 98.0 84.6 62.0 44.3 50.7 91.4 43.5 89.3 88.0
0.3 72.1 60.0 64.7 93.3 67.5 98.2 83.0 60.0 42.8 49.3 91.0 43.3 87.3 89.0
0.4 70.3 57.5 62.1 92.9 66.4 95.8 83.2 58.4 40.9 47.8 90.8 44.4 87.4 86.8
0.5 68.3 55.2 60.6 92.6 63.2 96.3 83.5 56.6 39.1 46.3 90.4 43.1 87.3 88.0

CLAUDE H (FS)

0.0 71.7 55.9 61.0 94.3 63.2 94.8 82.9 57.7 36.9 45.7 92.1 36.2 91.0 90.5
0.1 67.5 51.5 56.7 93.7 59.4 94.8 83.6 57.2 37.3 45.4 91.8 37.1 82.5 88.9
0.2 65.6 48.8 55.1 93.5 55.1 94.7 83.2 56.2 37.0 45.1 91.7 37.8 79.4 88.6
0.3 64.7 47.8 54.1 93.3 52.8 94.6 84.1 56.0 36.2 44.9 91.5 32.7 82.2 89.2
0.4 64.1 47.2 54.1 93.3 52.2 95.0 83.1 54.5 34.3 43.1 91.3 31.4 85.0 89.0
0.5 63.1 46.8 54.0 93.1 52.3 94.7 83.8 54.3 34.6 43.3 91.3 33.1 86.4 89.2

GPT-4O M (FS)

0.0 72.0 55.4 61.0 94.3 66.8 94.1 83.3 57.5 36.9 45.7 92.1 39.8 88.5 89.8
0.1 69.2 52.8 59.5 94.0 64.0 94.5 81.8 58.8 38.2 46.2 92.1 42.2 74.5 90.6
0.2 67.6 50.8 57.0 93.7 59.8 94.2 84.3 56.6 36.2 45.1 91.2 39.4 75.2 89.8
0.3 66.9 50.1 57.0 93.7 59.3 94.9 81.8 56.4 36.2 44.5 91.8 37.8 77.2 90.2
0.4 65.2 48.1 54.9 93.4 56.7 93.8 84.2 54.8 34.0 42.8 91.6 36.6 77.8 90.6
0.5 65.1 47.5 54.8 93.4 55.2 95.4 82.7 54.2 33.2 42.6 91.4 34.4 80.9 90.8

Table 3: Performance of three models from Table 2 when the argument annotations for each role in the report event
(Report) or additionally in the source event (Cross-Document) are corrupted with probability p (see §4.5).

(FS) yields major gains over the zero-shot setting
for all LLMs on all metrics. Even here, however,
few-shot results still trail the best fine-tuned results
(T5) by sizable margins on most metrics.

4.3 Cross-Document Summarization

Setup The setup for the cross-document task is
similar to that of the report task, but adds the source
text and its annotated event to the input alongside
the report text and its event. As the source texts
are full web articles, most are long (e.g. dev texts
average almost 62 sentences and over 1,500 words).
While this is no obstacle for the LLMs, the smaller
models do not support contexts of this size. Thus,
to enable a fair comparison across models, we ap-
ply a sentence retriever to the source, using the
report text as a query to select the top k most
relevant sentences to use as context.16 We con-
sider k ∈ {3, . . . , 10} and selected the maximum
value such that ≥ 95% of the resulting dev set con-
texts would fit untruncated in the input, yielding
k = 7. We experimented with the dense retrievers
all-mpnet-base-v2 (based on MPNet; Song et al.,
2020) and e5-large-v2 (Wang et al., 2022), but
obtained our best results with BM25 (Robertson
et al., 2009), which we use in all experiments.17

We use the same training and inference settings
from §4.2; see Appendices B, C for further details.

16This approach can also be justified by the fact that typi-
cally only a small portion of the source concerns the event.

17Models were evaluated on recall of annotated arguments
in the retrieved contexts for the dev set for fixed k. At k = 7,
BM25 recovered ∼ 76% of annotated source arguments.

Results are shown in the right half of Table 2
and are qualitatively similar to those for the report
task, with the fine-tuned models generally showing
the best overall numbers (R1,2,L, CR) or nearly so
(BS), although GPT-4o obtains the highest scores
on BS and Claude Sonnet on A and F. Once again,
nearly all models outperform the report baseline
across the board (ZS and GPT-4o Mini excepted).
Finally, we note that results on most metrics are
much lower in absolute terms compared to the
corresponding results from §4.2, testifying to the
greater difficulty of the cross-document task.

4.4 Input Ablations

Following Gantt et al. (2024), Appendix F consid-
ers ablations on the input for both tasks, in which
we omit the annotated events (TEXT ONLY) or the
texts (EVENT ONLY), and condition summary gen-
eration on the resulting ablated inputs. We also
present a novel third ablation that omits the an-
notated arguments, but leaves intact information
about the target frame and roles (TEXT+SCHEMA).
Consistent with Gantt et al.’s results, we find that
both the text and the full event annotations are
needed to obtain the best results (see Tables 8 and 9
in Appendix F), indicating that the SEAMUS tasks
are not reducible to standard summarization (TEXT

ONLY), structure-to-text (EVENT ONLY), or even
a (simpler) hybrid objective (TEXT+SCHEMA).



4.5 Impact of Extraction Quality

Setup Given that models require event arguments
in the input to produce the best summaries (§4.4),
a natural next question concerns the sensitivity of
these models to noise in the arguments. In real-
world scenarios, one generally will not have access
to gold arguments (as in §4.2-4.3) and must instead
rely on the outputs of an event extraction model.

To probe robustness to extraction errors in a con-
trolled manner, we apply variable amounts of noise
to the gold event annotations and evaluate model
performance on the resulting inputs. Concretely,
for each role R of each event, we edit R’s argu-
ments with probability p. If a role is selected for
editing, we then make one of the following edits
with equal probability:

1. INSERT: A new (incorrect) span from the text
is added to the argument list for R.

2. DELETE: An argument span is removed at
random from the argument list for R.

3. REPLACE: An argument span is replaced at
random with an incorrect span from the text.

For the cross-document task, we apply these edits
to the event annotations for both the report and the
source. We sample the edits to be made uniformly
and then prompt an LLM (GPT-4o) to apply them
by supplying in a prompt: (1) the text (report or
source), (2) the (JSON-formatted) report or source
event annotations, and (3) instructions for the edits
to be made, generated automatically by populating
templatic statements based on the edits sampled.
The LLM is free to select an appropriate new span
to be used for the INSERT and REPLACE operations.
We consider p ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, using the
same sampled edits for all models for a given p.

We evaluate one fine-tuned model (T5) and one
model each from the Claude (Claude Haiku) and
GPT (GPT-4o Mini) families. For T5, we use
the same checkpoint as presented in Table 2. For
Claude Haiku and GPT-4o Mini, we use few-shot
prompts similar to those used in the FS setting in
Table 2, but with two key changes. First, we alter
the task instructions to say that the event annota-
tions for the target example may contain errors,
and that the model must correct these errors when
generating its summary by consulting the text(s).
Second, we show the model how to do this by sub-
stituting noised versions of the event annotations
in the few-shot examples while leaving their asso-
ciated texts and summaries unchanged.

p Summary

0.0 The gradual accumulation of partially decayed plant material
in a bog functions as a carbon sink.

0.1 The gradual accumulation of decayed plant material
in a bog functions as a carbon sink.

0.2 The gradual accumulation of decayed plant material
in a bog acts as a carbon sink.

0.3 The gradual accumulation of decayed plant material
in a bog functions as a carbon sink.

0.4 The gradual accumulation of decayed plant material,
including peat, in bogs functions as a carbon sink.

0.5 The gradual accumulation of decayed plant material
in a bog functions as a carbon sink.

Table 4: Example outputs from GPT-4o Mini on the
cross-document task as role annotations are corrupted
with probability p. In many cases (as here), we find
minimal degradation in quality from p = 0 to p = 0.5.

Results for both tasks are in Table 3. For all
models, we observe (near-)monotonic drops in per-
formance for most metrics as p increases. While
performance drops are sizable in some cases, they
are arguably less radical than we might expect,
given the destructiveness of the changes at p = 0.5,
where roughly half of all roles contain extraction
errors. This is especially evident in the results
for Claude Haiku and GPT-4o Mini on the cross-
document task, where (e.g.) R1,2,L scores decrease
by only about 3 points from p = 0 to p = 0.5, BS
by less than 1, and F showing no drop at all. Fur-
ther, losses on CR (the most explicit measure of
extraction ability) are only ∼5 points for GPT-4o
Mini and ∼3 points for Claude Haiku.

These findings are confirmed by manual inspec-
tion of model outputs, where we often see min-
imal degradation in summary quality (Table 4)—
suggesting an intriguing strength of this task rel-
ative to traditional event extraction: the ability to
counteract extraction errors post-hoc by using im-
perfect event extractions as a query to locate rele-
vant passages in the input and then relying on those
passages to avoid analogous errors in the summary.

5 Human Evaluation
Setup Lastly, we conduct a human evaluation
of the reference and model-generated summaries.
We focus our evaluation on the cross-document
task, comparing the summaries generated by mod-
els presented in Table 2 (excluding RB). For the
GPT and Claude models, we use the FS (few-shot)
summaries only, owing to their superiority over the
ZS results. We randomly sampled 30 test set ex-
amples and presented the 7 model-generated sum-
maries for these examples, along with the refer-
ences, to 3 human raters—all English-speaking
NLP researchers who did not participate in other
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Figure 3: Histograms of summary quality scores (1-5, higher is better) from our human evaluation (§5). The bottom
right plot (red) aggregates scores across all three raters; each of the other plots (blue) shows a single rater’s scores.

parts of this work. Each rater provided a single
quality score for each summary based on the or-
dered list of attributes used by Gantt et al. (2024):
factuality, adequacy, coherence, relevancy, and flu-
ency. Scores were given from 1 (low) to 5 (high),
with half points allowed. Each rater thus provided
30×(7+1)×1 = 240 judgments. Raters were not
shown which model produced which summary, and
summary presentation order was randomized.18

Results Four sets of histograms of scores for each
model (and the reference) are shown in Figure 3.
The bottom right set (red) shows scores aggregated
across annotators, while the other three (blue) each
show scores of a single rater. For all raters, scores
are consistently high across models and the refer-
ence, with modes of ≥ 4 for each. Comparing pref-
erences across raters, however, we see significant
variability: GPT-4o achieved the highest average
score for one rater (top right, 4.28); GPT-4o Mini
for the second (bottom left, 4.57); and PEGASUS
for the third (top left, 4.23).

Looking at intra-rater distributions, however, it’s
unclear how robust these preferences are. Using
Wilcoxon rank-sum tests to evaluate pairwise dif-
ferences in each rater’s scores for a given pair of
models, we find that some of these preferences
are reliable at α = .05 (e.g. GPT-4o > T5 with
p = .016 for the first rater), but none holds up
when applying the Bonferroni correction for multi-
ple comparisons. We take these results to indicate
that our baselines are fairly effective at producing

18See Appendix D for further details.

good summaries, and that while they may some-
what differentiate themselves on individual met-
rics19, the best models on a more holistic picture
may come down to user preference, and there may
not be definitive bests even at this scope. This plu-
rality of solid modeling options is encouraging, and
suggests flexibility in the application of CDEKS to
a range of use cases.

6 Conclusion

This work has extended the task of event-keyed
summarization (EKS) to the cross-document set-
ting (CDEKS). To enable this, we provided an ex-
pert reannotation of the FAMUS CDAE dataset,
yielding high-quality event argument annotations
on all 1,265 examples. We then leveraged these
improved annotations to construct SEAMUS—a
collection of single- (report) and cross-document
summaries on top of FAMUS, further annotating
the summaries themselves for event arguments (§3).
We benchmarked SEAMUS on a diverse set of
baselines, including smaller fine-tuned models, as
well as zero- and few-shot prompted LLMs (§4.2,
§4.3). We then presented more detailed analysis,
conducting a comprehensive set of input abalations
(§4.4), assessing the impact of degraded event ex-
traction on summary quality (§4.5), and finally con-
cluding with a human evaluation of summary qual-
ity (§5). We release SEAMUS, along with our
baseline results, to facilitate further work on EKS
in both the single- and cross-document settings.

19See our discussion of argument recovery in Appendix F.



Limitations

One limitation of this work is SEAMUS’s size:
1,265 examples is sufficient for fine-tuning smaller
models and for conducting prompting experiments
with larger ones, but is likely insufficient for sub-
stantive fine-tuning of very large models.

A second limitation is that the cross-document
setting considers only two documents per exam-
ple. This constraint was imposed by the choice of
the FAMuS dataset as the basis for SEAMUS, as
cross-document argument annotations in the former
were provided only for pairs of report and source
texts. Future work expanding the set of source
texts would be valuable, and would allow both for
richer summaries and for more robust evaluation
of models’ ability to accurately synthesize infor-
mation across possibly differing accounts of events
(cf. Huang et al. (2024)), as information conflicts
are more common outside of Wikipedia citations.

We note, however, that addressing either limita-
tion may require relaxing data quality standards—
relying on crowdsourcing or LLM-powered anno-
tation techniques—as scaling our annotation proce-
dure to many more examples or source documents
would demand considerable resources. It was only
thanks to the above restrictions that we were able
to provide expert annotations for SEAMUS.

Ethics

As the report and source texts in SEAMUS are the
same as those in the FAMuS dataset, and as the
summaries in SEAMUS are simply distillations
of (parts of) these texts, we do not believe our
dataset introduces any novel risks as a resource.
Nonetheless, these texts do discuss real people,
places, and institutions, and models trained on this
data may thus be liable to make untrue claims about
them or otherwise misrepresent them. We intend
SEAMUS for academic use only, as a benchmark
to evaluate systems for single- and cross-document
event-keyed summarization.
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A Additional Examples

Below, we show a few examples of the report sum-
maries and their corresponding cross-document
summaries to illustrate how the latter typically pro-
vide greater detail about an event of interest relative
to the former. We note, however, that this is not
always the case: sometimes the source document
offers no additional information about the event
beyond what is contained in the report.

Example 1

• Frame: CAUSE TO RESUME

• Report: Areva renewed a uranium deal with
Niger in January 2008.

• Cross-Doc: On January 13, 2008, French
state-controlled nuclear reactor maker Areva
CEPFi said it had renewed a uranium mining
deal with the state of Niger and would invest
over 1 billion euros.

Exmaple 2

• Frame: SMUGGLING

• Report: A woman pled guilty to possession
and attempting to smuggle 89 grams of heroin
out of Thailand.

• Cross-Doc: Scot Sandra Gregory pled guilty
to possession and attempting to smuggle 89
grams of heroin out of Thailand in 1993 and
did her time in Thai jails.

Exmaple 3

• Frame: HOSTILE ENCOUNTER

• Report: The plot of Reign of Shadows in-
volves players returning to the dark side of the
moon of Luclin to face the snake-like Shissar
race led by Emperor Ssraeshza.

• Cross-Doc: The plot of Reign of Shadows in-
volves players returning to the heart of the
dark side of the moon of Luclin to face the
snake-like Emperor Ssraeshza and his unyield-
ing throngs of insidious zealots and enslaved
minions to take back the ancient citadel of Vex
Thal and end their march.

B Training and Evaluation

Models and Hardware The BART, T5, and
PEGASUS models were all trained on a single
NVIDIA Quadro RTX 6000 GPU using CUDA
version 11.7. Results reported with these models
are based on single runs with a fixed random seed.
We fine-tune the following pretrained checkpoints
available from HuggingFace:

• t5-large
• facebook/bart-large
• google/pegasus-large

Libraries Models were developed using Python
3.11.9. We used the following libraries for model
training, inference, and evaluation:

• accelerate (0.34.2)
• bert-score (0.3.13)
• bm25s (0.2.1)
• datasets (3.0.1)
• deepspeed (0.15.1)
• editdistance (0.8.1)
• evaluate (0.4.3)
• metametric (0.1.2)
• numpy (1.26.4)
• rouge-score (0.1.2)
• sentence-transformers (3.1.1)
• spacy (3.7.5)
• torch (2.0.1+cu117)
• transformers (4.45.1)
• tokenizers (0.20.0)

Metrics We use the implementations of ROUGE
(R1,2,L) and BERTScore (BS) provided by the
HuggingFace evaluate library. We implement
CEAF-REE (CR) and its soft-match variant (see
Tables 8, 9) using the metametric package (Chen
et al., 2023). We use the implementation of Align-
Score released by the metric’s authors (Zha et al.,
2023).20. Lastly, for FActScore, we use the few-
shot examples from Wanner et al. (2024) for decom-
position and use Llama3.1-8B Instruct (Touvron
et al., 2023; Dubey et al., 2024) for both atomic
fact decomposition and verification.

Hyperparameters BART, T5, and PEGASUS
were all trained for a maximum of 30 epochs with
a patience of 5 epochs, using ROUGE-1 (R1) F1

score on the dev set as the evaluation criterion. We
use the Adam optimizer (Kingma and Ba, 2014)
with default hyperparameters (β1 = 0.9, β2 =
0.99o, ϵ = 1e−8, η = 0.001) for all models. For
inference, we use beam search decoding with a
beam size of 5 and set the maximum tokens to 256.

20https://github.com/yuh-zha/AlignScore

https://github.com/yuh-zha/AlignScore


Input Formats Below, we show in greater detail
the input format for BART, PEGASUS, and T5 for
the report and cross-document results reported in
Table 2 and Table 3. (Note: these input formats
were also used to obtain the BART, PEGASUS,
and T5 results in the TEXT+EVENT rows in Ta-
ble 8 and Table 9.) Here, ⟨B⟩ and ⟨E⟩ denote the
model’s start-of-sequence and end-of-sequence to-
kens, respectively (if applicable), and ⟨S⟩ denotes
a special token used to delineate information per-
taining to a particular event role. Other text set
between angle brackets (⟨. . .⟩) denotes a variable
placeholder. We add spaces between separators and
adjacent text to improve readability below; they are
not present in the actual input.

The input format for the report task is:

⟨B⟩ Report: ⟨Report Text⟩ ⟨E⟩ ⟨B⟩
Frame ⟨S⟩ ⟨Frame Name⟩ ⟨S⟩ Trigger ⟨S⟩
⟨Trigger⟩ ⟨S⟩ ⟨Role 1 Name⟩ ⟨S⟩ ⟨Arg
1⟩; ⟨Arg 2⟩; . . . ⟨S⟩ ⟨Role N Name⟩ ⟨S⟩
⟨Arg 1⟩; ⟨Arg 2⟩; . . . ⟨S⟩ ⟨E⟩

The input format for the cross-document task
is:

⟨B⟩ Report: ⟨Report Text⟩ ⟨S⟩ Source:
⟨Source Text⟩ ⟨E⟩ ⟨B⟩ Report Event:
Frame ⟨S⟩ ⟨Frame Name⟩ ⟨S⟩ Trigger ⟨S⟩
⟨Trigger⟩ ⟨S⟩ ⟨Role 1 Name⟩ ⟨S⟩ ⟨Arg
1⟩; ⟨Arg 2⟩; . . . ⟨S⟩ ⟨Role N Name⟩ ⟨S⟩
⟨Arg 1⟩; ⟨Arg 2⟩; . . . ⟨S⟩ Source Event:
Frame ⟨S⟩ ⟨Frame Name⟩ ⟨S⟩ ⟨Role 1

Name⟩ ⟨S⟩ ⟨Arg 1⟩; ⟨Arg 2⟩; . . . ⟨S⟩
⟨Role N Name⟩ ⟨S⟩ ⟨Arg 1⟩; ⟨Arg 2⟩;
. . . ⟨S⟩ ⟨E⟩

The ablation settings presented in Table 8
and Table 9 (TEXT ONLY, EVENT ONLY,
TEXT+SCHEMA) do not fundamentally change this
overall structure, but merely omit parts of it (e.g.
TEXT+SCHEMA omits all ⟨Arg N⟩).

C LLMs

GPT All GPT models were accessed through the
OpenAI Chat API21, via the OpenAI Python SDK
(openai 1.50.2). As noted in §4, we set tempera-
ture to 0.7 and set the maximum output tokens to
256 (consistent with the fine-tuned models) for all
experiments reported in this paper and leave the

21https://platform.openai.com/docs/
api-reference/chat

other API defaults unchanged (n = 1, top_p is
not set, and we use no frequency penalty, presence
penalty, or logit bias). For GPT-4o, we used model
version gpt-4o-2024-08-06. For GPT-4o Mini,
we used model version gpt-4o-mini-2024-07-18.
Results reported throughout the paper are based on
a single generation per prompt.

Claude All Claude models were accessed
through the Anthropic Messages API22 via the An-
thropic Python SDK (anthropic 0.34.2). As with
the GPT models, we set temperature to 0.7 for all
experiments in this paper and leave the other de-
faults unchanged (we do not set top_p or top_k,
as recommended, and we do not set any stop se-
quences). For Claude 3.5 Sonnet, we used model
version claude-3-5-sonnet-20240620. For
Claude 3 Haiku, we used model version
claude-3-haiku-20240307. Results reported
throughout the paper are based on a single gen-
eration per prompt.

Prompts We use the same prompts for all LLMs.
Complete prompts are available in the public
GitHub repository for this work. Here, we pro-
vide prompt templates used to obtain the results in
Table 2 and Table 3, for both tasks (report or cross-
document) and for both the zero- (ZS) and few-shot
(FS) settings. Text set between angle brackets ⟨. . .⟩
denote placeholders.

We use the same system prompt for both tasks:

You are an expert intelligence briefer.
Your task is to analyze a specific, im-
portant event based ONLY on certain in-
formation, and to compile a concise sum-
mary of that event to be presented to a
high-ranked decision maker.

For the report task in the zero-shot (ZS) setting,
the user prompt has the following structure:

The Report text below describes a sit-
uation. The Report Template provides
specific details about the same situation.
Focus ONLY on information relevant to
the Situation Type.

Please write a short, accurate summary
that is one sentence long and that is based
ONLY on the provided information. DO
NOT include any extraneous details. DO
NOT use more than one sentence.

22https://docs.anthropic.com/en/api/messages
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Situation Type: ⟨Frame Name⟩ (⟨Frame
Def⟩)
Report: ⟨Report Text⟩
Report Template:

- ⟨Role 1⟩ (⟨Role 1 Def⟩): ⟨Arg 1⟩;
⟨Arg 2⟩; . . .

- . . .

- ⟨Role N⟩ (⟨Role N Def⟩): ⟨Arg 1⟩;
⟨Arg 2⟩; . . .

Summary:

The few-shot (FS) user prompt for the report task
had the following structure:

The Report text below describes a sit-
uation. The Report Template provides
specific details about the same situation.
Focus ONLY on information relevant to
the Situation Type.

Please write a short, accurate summary
that is one sentence long and that is based
ONLY on the provided information. DO
NOT include any extraneous details. DO
NOT use more than one sentence.

Here are a few examples to show you
how to complete the task:

Example 1
————-
Situation Type: ⟨Frame Name⟩ (⟨Frame
Def⟩)
Report: ⟨Report Text⟩
Report Template:

- ⟨Role 1⟩ (⟨Role 1 Def⟩): ⟨Arg 1⟩;
⟨Arg 2⟩; . . .

- . . .

- ⟨Role N⟩ (⟨Role N Def⟩): ⟨Arg 1⟩;
⟨Arg 2⟩; . . .

Summary: ⟨summary text⟩
Example 2
————-
⟨ same format as above ⟩
Example 3
————-
⟨ same format as above ⟩
Now here is the target example for you
to complete:

Target
———
⟨same format, but with summary

text omitted⟩

The zero-shot user prompt for the cross-document
task had the following structure:

The Report text below describes a situa-
tion, and the Report Template provides
specific details about the same situation.
The Source text provides additional con-
text about this situation, and the Source
Template provides additional details. Fo-
cus ONLY on information relevant to the
Situation Type.

Please write a short, accurate summary
that is preferably one sentence long
(and no more than two sentences long)
based ONLY on the provided informa-
tion. DO NOT include any extraneous
details. TRY to use one sentence and DO
NOT use more than two.

Situation Type: ⟨Frame Name⟩ (⟨Frame
Def⟩)
Report: ⟨Report Text⟩
Report Template:

- ⟨Role 1⟩ (⟨Role 1 Def⟩): ⟨Arg 1⟩;
⟨Arg 2⟩; . . .

- . . .

- ⟨Role N⟩ (⟨Role N Def⟩): ⟨Arg 1⟩;
⟨Arg 2⟩; . . .

Situation Type: ⟨Frame Name⟩ (⟨Frame
Def⟩)
Source: ⟨Source Text⟩
Source Template:

- ⟨Role 1⟩ (⟨Role 1 Def⟩): ⟨Arg 1⟩;
⟨Arg 2⟩; . . .

- . . .

- ⟨Role N⟩ (⟨Role N Def⟩): ⟨Arg 1⟩;
⟨Arg 2⟩; . . .

Summary:

The few-shot user prompt for the cross-document
task (not explicitly shown) follows exactly the same
structure as the few-shot prompt for the report task,
but naturally uses the cross-document example for-
mat in lieu of the report format.



D Human Evaluation

Full instructions for the human evaluation, along
with a JSON file containing the items that were
rated, are provided in our GitHub repo (https://
github.com/wgantt/SEAMuS).

E Data & Annotation

E.1 License

We release SEAMUS and our code under a CC-
BY-SA-4.0 license. As noted in the Ethics section,
we intend SEAMUS for research use only, not for
commercial purposes.

E.2 Additional Summary Statistics

Additional summary statistics—about the report
and source texts are shown in Table 7

E.3 Inter-Annotator Agreement

As we note in §3, there was no redundancy in the
SEAMUS annotation process: corrections to the
FAMuS arguments, writing of summaries, and an-
notation of summary arguments were performed
by a single annotator for each example. However,
annotators did conduct a 10-example practice anno-
tation for both the report and cross-document tasks.
Thus, to give some (limited) sense of the inter-
annotator agreement, Table 5 and Table 6 present
pairwise comparisons of annotators’ annotations on
these 10 items for the report and cross-document
tasks (respectively) using the reference-based met-
rics from Table 2 (plus the edit distance version
of CR, CRsoft; see Appendix F). We treat anno-
tations produced by annotators in the P column
as “predictions” to be evaluated against the “refer-
ence” annotations produced by annotators in the R
column. Two important notes:

1. Because all of these metrics are F1 scores, the
distinction between P and R is moot and re-
versing P and R for any given pair would
yield the same results. In both tables, we re-
port results for all unordered annotator pairs,
as well as the average across all pairs.

2. Because these were practice annotations, none
of them were included in the final SEAMUS
dataset. We would thus expect the numbers
reported here to be an underestimate of the
level of agreement on the main task, had we
had redundancy.

P R R1 R2 RL BS CR CRsoft

A1 A2 67.1 44.5 52.6 93.4 72.7 86.9
A1 A3 72.4 53.9 63.1 94.4 76.4 86.5
A2 A3 77.2 60.5 62.5 94.7 75.9 89.6

Avg. 72.2 53.0 59.2 94.2 75.0 87.7

Table 5: Inter-annotator agreement on the 10 practice
examples from the SEAMUS report summary annota-
tion, as given by the reference-based metrics we report
in §4, treating annotator P ’s responses as predictions
and R’s responses as references (the reverse is equiva-
lent, since these metrics are symmetric).

P R R1 R2 RL BS CR CRsoft

A1 A2 64.8 42.4 53.3 94.0 40.5 56.6
A1 A3 64.7 43.8 51.6 93.0 50.6 65.0
A1 A4 45.8 22.7 33.0 90.7 49.8 65.2
A1 A5 69.0 48.1 58.8 94.6 46.8 62.8
A2 A3 77.7 66.8 72.4 94.9 50.6 65.6
A2 A4 55.4 33.9 40.8 91.2 50.7 66.8
A2 A5 72.0 56.1 64.9 94.1 50.6 66.9
A3 A4 55.4 33.2 41.9 90.7 51.8 69.0
A3 A5 71.0 57.2 61.8 93.6 52.6 69.8
A4 A5 48.2 27.2 37.3 90.7 52.8 69.6

Avg. 62.4 43.1 51.6 92.8 49.7 65.7

Table 6: Inter-annotator agreement on the 10 practice ex-
amples from the SEAMUS cross-document summary
annotation, as given by the reference-based metrics we
report in §4, treating annotator P ’s responses as pre-
dictions and R’s responses as references (the reverse is
equivalent, since these metrics are symmetric).

Report Source

Train Dev Train Dev

Examples 759 253 759 253
Avg. Words 59 60 1,084 1,511
Avg. Sentences 2.0 2.0 44.7 61.5
Avg. Arguments 3.1 3.5 3.8 4.2

Table 7: Summary statistics for the SEAMUS report
(left) and source documents, which are the same as those
in the FAMUS dataset, albeit with slightly different
arguments due to our corrections of the original FAMUS
argument annotations.

https://github.com/wgantt/SEAMuS
https://github.com/wgantt/SEAMuS


E.4 Annotation Interface

Here, we include screenshots of the annotation in-
terface used to complete the Phase 2 annotation.23

As noted in §3, the interface was adapted from
Vashishtha et al.’s (2024) annotation interface for
the FAMUS cross-document argument extraction
task (cf. Figures 5 and 6 in Appendix A of their
paper). Tasks were run via Turkle, an open-source
tool with similar functionality to Amazon Mechan-
ical Turk.24

In the first part of the Phase 2 annotation, the
existing (crowdsourced) FAMUS argument anno-
tations for the source text were reviewed and cor-
rected, and the cross-document summaries were
written jointly on the basis of these corrected an-
notations and the corrected report text argument
annotations from Phase 1 (see Figure 4). The inter-
face was pre-populated with (a) the corrected report
text arguments from Phase 1 (in the “Report Text”
tab, highlighted); the report summary from Phase 1
(in the “Report Summary” field); and (c) the uncor-
rected source text arguments (in the “Source Text”
tab). The source text arguments were reviewed and
corrected by toggling to the “Source Text” tab and
making any necessary edits to the existing selec-
tions. The cross-document summaries were then
written in the “Combined Summary” field. The UI
for selecting, adding, and removing arguments was
unchanged relative to Vashishtha et al.’s implemen-
tation. The major differences here are the addition
of the “Report Summary” and “Combined Sum-
mary” fields, and the inability to alter the selected
FrameNet frame for annotation.

In the second part, arguments were annotated on
the summaries written in the first part (Figure 5).
The interface is similar to the interface for the first
part of the Phase 2 annotation, except that the “Re-
port Summary” and “Combined Summary” fields
have been removed, and a new tab (“Summary
Text”) containing the cross-document summary to
be annotated was added. Summary arguments were
annotated by toggling to this tab and making argu-
ment selections in the same way as before. Here,
the corrected argument annotations for both the re-
port text and for the source text were pre-populated
for each task under their respective tabs, allowing
annotators to toggle between these for reference in

23Recall that the Phase 1 annotation, which involved correct-
ing the FAMUS report text argument annotations and writing
the report summaries, was done in JSON files.

24https://github.com/hltcoe/turkle-client

Figure 4: Interface for source text argument correction
and cross-document summary writing (the first part of
the Phase 2 annotation).
annotating the summary arguments.

As can be seen in both Figure 4 and Figure 5,
details about the frame for the target event, includ-
ing the frame name, its definition, as well as role
names and their definitions, were provided as in the
original FAMUS interface. Instructions were also
accessible at any time via the dropdown shown at
the top of the screen.

E.5 Annotation Instructions
Annotation instructions for both phases are avail-
able on our GitHub repo (https://github.com/
wgantt/SEAMuS).

E.6 Annotator Demographics
The full set of annotators consists of six students
(five graduate and one undergraduate) pursuing
degrees in Computer Science (3), Linguistics (2),
and Cognitive Science (1), all of whom are fluent
English speakers. Only one was financially com-
pensated for the annotations (at a rate of $15 per
hour), as this person initially became involved with
the project through a university job board posting
for the task, whereas the others were members of
the lab from which the project originated. The
project, and the intended use of their annotations,
was clearly explained to all participants in meetings
before they began any annotation.

https://github.com/hltcoe/turkle-client
https://github.com/wgantt/SEAMuS
https://github.com/wgantt/SEAMuS


Figure 5: Interface for annotation of arguments on the
cross-document summaries (the second part of the Phase
2 annotation).

F Additional Results

F.1 Main Results

Table 10 and Table 11 contain 95% confidence
intervals of the results in Table 2 based on non-
parametric bootstraps (n = 1, 000).

F.2 Input Ablations

Here, we include the full results of the ablations on
the inputs introduced briefly in §4.4, which were
inspired by similar ones conducted by Gantt et al.
(2024). In the TEXT ONLY setting, we omit in-
formation about the target event entirely and in-
clude only the text in the input—either the report
for the report task, or both the report and source
for the cross-document task—effectively reduc-
ing the problem to standard summarization. In
the EVENT ONLY setting, we omit the text(s) and
include only information about the target event—
either the report event annotations for the report
task, or both the report and source event annota-
tions for the cross-document task—making this
ablation similar to structure-to-text tasks, such as
AMR-to-text (Pourdamghani et al., 2016)). In the
TEXT+SCHEMA setting, we omit the argument an-
notations, but leave in information about the frame
and its roles. For the fine-tuned models, we include
just the names of the frame and its roles. For the
LLMs, we additionally include the definitions of
the frame and roles as given in FrameNet. Finally,
TEXT+EVENT is the name we assign to the unab-
lated setting, used to obtain the results in Table 2
and Table 3, where both the text(s) and the full
event annotations are present in the input. For all

ablation settings, BART, PEGASUS, and T5 are
fine-tuned on the ablated inputs using the same set-
tings for training and inference as are described in
§4. For the GPT and Claude models, the examples
provided in the few-shot setting are also ablated in
the way called for by each ablation.

Report Results for the report task are in Table 8.
Here and in the cross-document results to follow
(Table 9), we include a variant of CEAF-REE (CR)
that we dub CRsoft, which aligns and scores pre-
dicted arguments against reference arguments us-
ing normalized levenshtein distance rather than ex-
act match—enabling a more nuanced comparison
of different models’ ability to recover event argu-
ments in the summaries they produce.

Across all models and most metrics, we see sig-
nificant drops in performance when ablating any
component of the input. Notably, a number of mod-
els, especially the LLMs, fall to numbers near or
below those of the report baseline (RB) on a variety
of metrics.

There are, however, some unsurprising excep-
tions here. First, in many cases, results on CR and
CRsoft in the EVENT ONLY ablation are markedly
stronger than the report baseline, and are even
competitive with the results in the unablated set-
ting (TEXT+EVENT) for most of the zero-shot-
evaluated LLMs. This echoes a similar finding
by Gantt et al. (2024), who note that “the docu-
ment [is not] needed to generate some string that
contains all the [event] template’s arguments.” If
this is correct, we would expect to see strong CR
scores in the EVENT ONLY setting, even though
the summaries may be poorer overall (as reflected
in other metrics).

An intriguing, related observation is that
whereas the fine-tuned models look dominant
against the LLMs on CR in the unablated setting,
this advantage sharply diminishes when we turn
to CRsoft. This is likely explained by the fact that
the fine-tuned models are able to learn the conven-
tions adopted by annotators in selecting argument
spans, whereas the (prompted) LLMs do not—even
though they may still be generating outputs with
approximately correct spans that are nonetheless
harshly penalized by an exact match.

A second exception is the results on AlignScore
(A) and FActScore (F) in the TEXT ONLY setting,
which are competitive with—and in some cases
superior to—the results in the unablated setting
across models. Recall that both A and F here eval-



uate how well the report summary is supported by
the report text. It is thus intuitively possible, and
evidently quite feasible, to generate a summary that
is adequately supported by the text without relying
at all on the event annotations—which is exactly
what is demanded by the TEXT ONLY setting. This
is once again consistent with findings from Gantt
et al. (2024) on the NLI-based family of metrics
MENLI (Chen and Eger, 2023), which are broadly
similar to AlignScore and FActScore: “[event] tem-
plates are not needed to generate some summary
that is entailed by the document.”

We also note that, for the fine-tuned models, we
obtain A scores in the TEXT+SCHEMA ablation
that are comparable (T5) or higher than (BART,
PEGASUS) those of the unablated setting. This
makes sense, inasmuch as the TEXT+SCHEMA set-
ting contains a superset of the inputs of the TEXT

ONLY setting, though it is unclear why we do not
find a similar pattern with the LLMs.

Finally, note that the report baseline, which treats
the report text itself as the summary, should in
theory achieve perfect A and F scores, and thus
does not really represent a fair comparison with
the other models (note: this is also true for the
cross-document setting). That it does not is surely
a reflection of the fact that both metrics rely on
outputs from imperfect models. Such flaws of LM-
based metrics must not be overlooked.

Cross-Document results on the cross-document
task are shown in Table 9 and follow a pattern
that is qualitatively very similar to that of the
report results above. We consistently find that
the best results are obtained in the unablated set-
ting (TEXT+EVENT) for most metrics, with the
same exception regarding CR/CRsoft in the EVENT

ONLY setting as we found for the report task. Cu-
riously, however, the findings on A are more com-
plicated here: whereas we continue to see the
strongest results on this metric in the TEXT ONLY

and TEXT+SCHEMA ablations for the fine-tuned
models, with the LLMs, we instead see our best re-
sults in the unablated setting—following the trend
of other metrics.

F.3 Argument Recovery by Role

Table 12 and Table 13 show CR and CRsoft results
(respectively) on the cross-document task broken
down by role for the 20 roles with highest support
(number of annotated arguments) in the SEAMUS
training split.

Comparing the tables reveals an interesting di-
chotomy. For CR, no model is consistently dom-
inant across all roles, with fine-tuned models col-
lectively obtaining the best results on 12 of the 20
and few-shot prompted models obtaining the best
results on the remaining 8. The CRsoft results, by
contrast, heavily favor GPT-4O, which achieves
the best scores on 13 roles. Here, the fine-tuned
models are top-performing on only 4 roles.

We believe the same factor discussed in sub-
section F.2 explains this dichotomy: whereas CR
requires exact span match—and thus will tend to
favor models able to learn span boundary conven-
tions through fine-tuning—CRsoft does not, and
rewards spans proportional to their edit distance
from the reference. Thus, CRsoft reveals the LLMs
(and GPT-4O above all) to be effective in produc-
ing summaries that recover the correct arguments,
albeit with more lexical modifications relative to
the reference.

G Use of AI Assistants

GitHub Copilot was used as a coding assistant
for parts of model development and data analysis,
though its suggestions were carefully reviewed by
the authors. AI assistants were not used for other
parts of this work (writing, brainstorming, etc.).



Model Ablation Setting R1 R2 RL BS CR CRsoft A F

Report Baseline - - 56.15 46.05 48.37 91.57 52.58 62.56 99.11 98.73

GPT-4O M

TEXT ONLY ZS 49.96 28.18 39.23 91.31 34.59 53.13 95.74∗ 83.11
EVENT ONLY ZS 53.11 34.04 43.67 91.51 52.13 77.37 60.98 53.42
TEXT+SCHEMA ZS 53.29 31.60 42.91 91.28 38.24 56.92 79.07 76.38
TEXT+EVENT ZS 62.18 42.32 51.26 93.17 58.48 78.71 86.04 75.80
TEXT+EVENT FS 71.98 55.35 61.03 94.34 66.80 83.66 94.06 83.32

GPT-4O

TEXT ONLY ZS 51.52 29.90 40.90 91.50 33.75 52.06 94.49 84.00∗

EVENT ONLY ZS 56.39 38.34 46.34 91.93 59.35 83.35 70.66 57.14
TEXT+SCHEMA ZS 56.57 37.19 47.08 92.00 42.37 61.50 81.66 73.05
TEXT+EVENT ZS 63.95 45.21 52.95 93.18 61.39∗ 82.60∗ 83.87 74.78
TEXT+EVENT FS 72.54† 56.59† 62.34† 94.40 69.61† 87.27† 94.72 81.58

CLAUDE H

TEXT ONLY ZS 50.41 30.39 40.53 91.11 32.35 51.46 93.10 83.77
EVENT ONLY ZS 55.03 36.37 45.71 91.79 54.36 78.25 72.15 56.29
TEXT+SCHEMA ZS 57.67 38.51 47.68 92.08 41.36 59.10 83.24 77.05
TEXT+EVENT ZS 64.75 46.19 54.67 93.44 58.75 78.92 84.87 77.57
TEXT+EVENT FS 71.73 55.86 61.05 94.29 63.21 80.95 94.82 82.54

CLAUDE S

TEXT ONLY ZS 46.98 22.83 36.24 90.78 25.68 45.88 91.31 82.41
EVENT ONLY ZS 55.66 36.89 46.21 92.13 56.38 78.54 72.15 60.37
TEXT+SCHEMA ZS 57.33 36.18 46.98 92.30 41.71 61.46 88.93 77.85
TEXT+EVENT ZS 67.38∗ 48.11∗ 56.52∗ 93.84∗ 61.07 81.35 92.96 80.59
TEXT+EVENT FS 72.16 54.64 61.29 94.54† 65.66 83.68 95.89† 83.86†

BART

TEXT ONLY FT 57.13 43.53 50.46 91.77 46.27 58.59 97.42 84.64
EVENT ONLY FT 58.34 40.96 48.51 91.83 59.82 75.34 51.17 52.41
TEXT+SCHEMA FT 62.23 49.43 55.55 92.59 52.92 65.83 95.01 83.34
TEXT+EVENT FT 74.46 61.68 66.42 94.57 69.88 82.72 91.59 79.25

PEGASUS

TEXT ONLY FT 60.33 46.19 52.44 92.13 45.95 60.40 97.45 85.20
EVENT ONLY FT 59.69 41.97 49.46 91.90 57.14 74.34 53.93 53.43
TEXT+SCHEMA FT 63.28 49.79 55.91 92.71 53.69 66.28 96.94 84.33
TEXT+EVENT FT 75.18 62.53 66.96 94.70 70.00 82.68 96.08 82.23

T5

TEXT ONLY FT 58.38 45.25 51.81 91.96 49.70 60.75 98.88 87.85
EVENT ONLY FT 63.14 45.62 52.47 92.67 64.00 80.08 68.42 62.63
TEXT+SCHEMA FT 65.82 51.90 58.46 93.11 56.18 68.42 97.92 82.93
TEXT+EVENT FT 76.64 64.44 68.90 95.02 74.20 85.22 98.15 85.02

Table 8: Input ablation results for the report summarization task. Best overall results are in bolded. ∗ and †

denote best zero- and few-shot results, respectively. See §4.1 for an explanation of metrics. See Appendix F for an
explanation of the settings.



Model Ablation Setting R1 R2 RL BS CR CRsoft A F

Report Baseline - - 48.52 33.28 39.31 89.58 31.00 42.04 99.29 93.12

GPT-4O M

TEXT ONLY ZS 37.56 16.93 26.97 88.98 21.86 40.48 73.58 91.60
EVENT ONLY ZS 52.45 31.15 40.04 91.17 37.48 66.51 69.97 75.00
TEXT+SCHEMA ZS 41.88 20.40 30.32 89.72 24.04 44.76 76.64 89.12
TEXT+EVENT ZS 51.87 29.90 39.10 91.31 38.99 64.13 81.46 88.89
TEXT+EVENT FS 57.48 36.99 45.74 92.08 39.78 62.93 88.48 89.79

GPT-4O

TEXT ONLY ZS 41.59 19.28 30.70 89.48 21.60 42.04 69.09 92.06
EVENT ONLY ZS 54.03 33.98 42.13 91.51 41.75∗ 69.63∗ 81.02 80.55
TEXT+SCHEMA ZS 49.87 27.04 37.76 90.86 25.80 48.53 85.44 89.75
TEXT+EVENT ZS 57.97 36.42 45.89 92.22∗ 41.34 68.04 86.61 88.41
TEXT+EVENT FS 61.17† 40.62† 49.38† 92.67† 42.72† 69.27† 90.62 88.45

CLAUDE H

TEXT ONLY ZS 47.27 25.48 36.49 90.23 22.64 43.20 84.29 92.59
EVENT ONLY ZS 53.35 33.01 42.94 91.39 38.64 66.08 77.70 76.83
TEXT+SCHEMA ZS 51.79 30.45 41.04 90.87 26.38 48.02 87.10 90.87
TEXT+EVENT ZS 57.72∗ 36.88∗ 46.35∗ 92.05 36.22 60.03 90.37 91.36
TEXT+EVENT FS 59.42 39.40 48.56 92.13 37.20 59.70 90.99 90.50†

CLAUDE S

TEXT ONLY ZS 44.13 20.08 32.73 89.88 19.93 40.24 87.26 92.30
EVENT ONLY ZS 53.51 33.51 42.73 91.53 39.78 66.17 84.12 81.91
TEXT+SCHEMA ZS 51.37 29.33 40.06 90.94 28.05 49.07 88.64 89.33
TEXT+EVENT ZS 56.77 34.75 45.27 91.91 35.24 59.47 93.41∗ 91.71∗

TEXT+EVENT FS 57.95 38.05 47.53 92.09 37.32 59.31 95.09† 90.39

BART

TEXT ONLY FT 48.57 30.30 39.70 89.99 27.12 44.43 90.06 86.87
EVENT ONLY FT 56.37 37.04 45.14 91.21 39.12 62.90 56.01 68.10
TEXT+SCHEMA FT 51.67 35.12 44.15 90.42 32.31 49.47 94.45 90.52
TEXT+EVENT FT 63.77 45.50 52.98 92.59 44.97 66.36 85.55 85.27

PEGASUS

TEXT ONLY FT 50.85 33.44 42.51 90.29 30.22 47.46 97.63 91.80
EVENT ONLY FT 58.52 38.41 46.46 91.42 39.98 64.06 67.05 75.80
TEXT+SCHEMA FT 51.21 34.18 43.11 90.28 30.15 47.04 97.99 92.72
TEXT+EVENT FT 63.66 46.24 53.18 92.51 43.73 64.51 93.85 90.48

T5

TEXT ONLY FT 49.18 33.15 41.39 89.94 30.98 46.58 98.75 91.60
EVENT ONLY FT 59.96 40.55 47.51 91.84 45.30 68.85 73.73 78.98
TEXT+SCHEMA FT 53.06 35.64 44.93 90.64 31.87 50.14 94.11 91.30
TEXT+EVENT FT 64.14 46.36 52.79 92.56 44.67 65.66 92.48 90.19

Table 9: Input ablations on the cross-document summarization task.Best overall results are in bolded. ∗ and †

denote best zero- and few-shot results, respectively. See §4.1 for an explanation of metrics. See Appendix F for an
explanation of the settings.



Report

Model S R1 R2 RL BS CR A F

GPT-4O M ZS [60.0, 64.5] [39.3, 45.2] [48.7, 54.0] [92.8, 93.6] [52.8, 60.5] [80.5, 86.9] [72.8, 78.6]
FS [69.8, 74.0] [52.5, 58.1] [58.5, 63.5] [94.0, 94.7] [60.7, 68.8] [93.4, 95.8] [80.8, 85.8]

GPT-4O ZS [61.6, 66.3] [42.4, 48.2] [50.5, 55.5] [92.8, 93.6] [54.2, 62.3] [83.0, 88.8] [71.2, 78.0]
FS [70.3, 74.9] [53.6, 59.8] [59.6, 65.0] [94.0, 94.8] [62.7, 70.5] [92.6, 95.4] [78.4, 84.5]

CLAUDE H ZS [62.7, 67.2] [43.5, 49.1] [52.4, 57.3] [93.1, 93.9] [52.5, 60.4] [81.5, 87.7] [74.1, 80.1]
FS [69.4, 73.9] [52.7, 58.7] [58.5, 63.6] [93.9, 94.7] [58.1, 66.5] [93.3, 96.1] [79.6, 85.2]

CLAUDE S ZS [65.1, 69.6] [45.3, 50.8] [54.1, 59.0] [93.5, 94.2] [55.0, 63.3] [90.8, 94.8] [77.6, 83.5]
FS [69.8, 74.4] [51.7, 57.5] [58.8, 53.8] [94.2, 94.9] [60.7, 68.6] [94.8, 96.7] [80.8, 86.5]

BART FT [71.9, 76.6] [58.7, 64.6] [63.7, 69.1] [93.3, 94.1] [64.3, 72.1] [89.2, 93.9] [76.1, 82.2]
PEGASUS FT [72.9, 77.5] [59.5, 65.4] [64.2, 69.5] [93.3, 94.1] [65.4, 72.4] [94.4, 97.5] [79.4, 85.0]
T5 FT [74.3, 78.9] [61.4, 67.3] [66.1, 71.5] [93.6, 94.4] [69.7, 76.9] [97.4, 98.8] [82.4, 87.5]

Table 10: 95% confidence intervals [low, high] from a non-parametric bootstrap (n = 1000) of the report results
given in Table 2.

Cross-Document

Model S R1 R2 RL BS CR A F

GPT-4O M ZS [49.9, 53.7] [27.8, 32.0] [37.0, 41.0] [91.0, 91.6] [35.9, 42.2] [78.5, 84.1] [86.7, 90.7]
FS [55.2, 59.7] [34.3, 39.5] [43.4, 47.8] [91.7, 92.4] [35.6, 42.9] [86.0, 90.6] [87.7, 91.6]

GPT-4O ZS [55.7, 60.0] [33.8, 38.9] [43.5, 48.1] [91.8, 92.6] [36.4, 43.5] [83.8, 89.0] [86.0, 90.6]
FS [59.0, 63.3] [38.1, 43.1] [47.1, 51.5] [92.3, 93.0] [38.0, 45.3] [88.4, 92.8] [86.3, 90.5]

CLAUDE H ZS [55.6, 59.7] [34.3, 39.2] [44.0, 48.7] [91.7, 92.4] [32.8, 39.9] [88.1, 92.3] [89.7, 92.9]
FS [57.0, 61.5] [36.7, 42.1] [46.0, 50.9] [91.8, 92.5] [33.4, 40.4] [89.0, 92.9] [88.8, 92.2]

CLAUDE S ZS [54.7, 58.9] [32.4, 37.2] [43.1, 47.7] [91.6, 92.3] [31.1, 37.9] [91.7, 95.0] [89.6, 93.4]
FS [55.6, 60.4] [35.4, 40.8] [45.2, 49.9] [91.7, 92.5] [33.9, 41.5] [94.1, 96.0] [88.5, 92.2]

BART FT [61.5, 66.1] [42.7, 48.4] [50.5, 55.6] [91.5, 92.2] [41.3, 49.1] [82.3, 88.6] [82.6, 87.7]
PEGASUS FT [61.2, 66.0] [43.1, 49.0] [50.4, 55.8] [91.3, 92.1] [40.9, 48.4] [91.7, 95.6] [88.7, 92.3]
T5 FT [61.5, 66.4] [43.6, 49.2] [50.2, 55.3] [91.3, 92.2] [40.3, 48.4] [90.1, 94.4] [88.2, 91.9]

Table 11: 95% confidence intervals [low, high] from a non-parametric bootstrap (n = 1000) of the cross-document
results given in Table 2.

Role Support GPT-4O M GPT-4O CLAUDE H CLAUDE S BART PEGASUS T5

TIME 523 39.13 40.69 34.17 37.25 42.07 44.32 47.09
PLACE 499 33.33 38.49 25.00 26.12 27.42 33.11 38.56
AGENT 240 34.67 32.89 27.40 23.13 42.38 32.43 39.74
THEME 94 49.12 44.07 43.33 35.09 40.00 39.44 39.34
ENTITY 65 29.27 35.90 35.00 35.90 30.00 35.90 41.03
PATIENT 53 41.18 30.30 50.00 34.29 43.75 51.61 48.48
GOAL 49 36.84 50.00 37.84 27.03 30.00 40.91 45.00
EVENT 43 14.81 20.69 20.69 7.14 18.75 25.00 6.45
CAUSE 42 6.45 24.24 11.43 12.12 31.25 10.81 26.67
EXPERIENCER 39 38.10 70.00 70.00 54.55 52.17 38.46 54.55
VICTIM 39 41.38 53.33 48.28 34.48 31.25 37.50 32.26
GOODS 38 26.67 75.00 0.00 28.57 50.00 50.00 14.29
PROTAGONIST 38 26.67 37.50 37.50 40.00 40.00 37.50 50.00
SOURCE 30 66.67 77.78 55.56 63.16 63.16 50.00 66.67
TOPIC 26 13.33 13.33 0.00 14.29 15.38 13.33 0.00
SPEAKER 25 50.00 50.00 66.67 50.00 50.00 70.59 58.82
ADDRESSEE 22 33.33 60.00 16.67 40.00 60.00 40.00 33.33
STIMULUS 21 15.38 30.77 33.33 33.33 46.15 33.33 50.00

Table 12: CR F1 results on test set cross-document summaries for the top 20 roles with highest support (#
arguments) in the SEAMUS training split (which has 3,004 total arguments). Results with GPT and Claude models
are from the few-shot (FS) setting. Best results for each role are bolded.



Role Support GPT-4O M GPT-4O CLAUDE H CLAUDE S BART PEGASUS T5

TIME 523 57.37 65.22 49.22 50.52 60.54 61.40 65.43
PLACE 499 44.84 53.39 37.46 37.67 46.93 47.67 52.15
AGENT 240 65.40 67.47 59.78 50.16 66.72 57.99 62.06
THEME 94 73.21 73.96 69.22 72.96 71.75 64.71 68.59
ENTITY 65 66.33 76.13 63.16 60.07 63.34 63.12 69.44
PATIENT 53 76.28 73.52 74.41 68.62 70.88 73.28 73.36
GOAL 49 50.53 66.30 50.19 45.42 47.30 53.63 60.30
EVENT 43 52.75 63.52 52.76 42.95 45.97 52.09 35.38
CAUSE 42 47.66 52.99 39.41 42.03 43.23 43.87 49.82
EXPERIENCER 39 68.83 91.48 82.86 69.44 56.03 60.99 61.06
VICTIM 39 62.13 74.79 71.75 60.13 65.62 60.53 55.89
GOODS 38 42.77 79.33 33.35 50.68 61.94 57.46 24.39
PROTAGONIST 38 60.13 72.52 54.02 66.03 66.57 67.63 61.24
SOURCE 30 78.00 84.13 60.54 65.55 66.80 55.03 69.62
TOPIC 26 19.06 19.06 17.75 20.42 21.70 35.80 12.96
SPEAKER 25 58.21 61.41 71.85 64.91 64.92 73.03 66.28
ADDRESSEE 22 44.60 89.49 40.21 52.63 63.63 73.95 41.94
STIMULUS 21 38.61 70.46 54.55 66.70 53.39 74.75 57.65

Table 13: CRsoft (distinct from CR; see §F.2) F1 results on test set cross-document summaries for the top 20 roles
with highest support (# arguments) in the SEAMUS training split (which has 3,004 total arguments). Results with
the GPT and Claude models are from the few-shot (FS) setting. Best results for each role are bolded.


